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Abstract. A plane wave is incident normally onto the boundary of a semi-infinite sta- 
tionary random medium. The statistical moments of the field variable, both at one and at 
several points, are calculated when the refractive index of the medium at different points 
has a joint Gaussian probability distribution and Gaussian power spectrum, and the 
observer is at a very great depth within the medium. From these moments the probability 
distributions are calculated. Although the results are simple, the process by which they are 
obtained is complicated by the presence of multiple scatter. The method uses a pertur- 
bation expansion, the terms of which may be interpreted physically as different orders of 
scattering in a ‘successive scattering’ approach. 

In the limit of infinite distance the single-point probability distribution of the field is a 
Rayleigh distribution of amplitude together with a uniform distribution of phase. For 
smaller depths there are situations in which this field has an additive constant component 
so that the resultant amplitude has a Rice distribution. 

In the limit of infinite depth, the moments for two or more points separate into the 
product of the contributions from the individual points. Thus the fields at different points 
are statistically independent and their joint probability distribution is simply the product 
of Gaussian distributions which describe the separate fields. The spatial power spectrum 
of the observed signal is then constant. 

1. Introduction 

In considering the propagation of electromagnetic waves in extended random media, 
it has been long and widely assumed that after a sufficiently great distance has been 
traversed the varying component of the field attains a Rayleigh distribution about its 
mean value and the phase of this varying part is uniformly distributed. Under certain 
circumstances (if the onset of Gaussian statistics occurs before the mean field has 
decayed to zero) this is centred on some non-zero value, leading to a Rice distribution 
of field strength or a Rice-squared distribution of intensity. As the distance increases 
the mean field tends to zero, resulting in a Rayleigh distribution of field strength and 
an exponential distribution of intensity. 

One of the main applications of this work is in radio astronomy, when the 
propagation of waves through the interplanetary and interstellar media is studied. In 
this field, work has been done to investigate experimentally the occurrence or other- 
wise of these distributions: for example Milne (1975) has compared the distributions 
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of intensity from small radio sources with three known distributions (the Rice- 
squared, truncated Gaussian and log-normal distributions) and has shown that the 
Rice-squared distribution gives the best fit to the experimental data. 

In addition a large amount of work has been done under the assumption of 
Gaussian statistics: Fante (1975) has described a method of calculating the field 
moments in the case of multiple scatter by starting with their known values in the 
far-distance (Gaussian) limit and extrapolating toward the source. Budden and 
Uscinski (1970, 197 1, 1972) have assumed Gaussian statistics to calculate scintillation 
indices for extended sources observed with receivers having finite bandwidth. 

Although the onset of Gaussian statistics has been so well known and so well used, 
there has been until now no rigorous proof that it is correct, though many authors 
have written on the subject. De Wolf (1975) has reviewed the arguments for a 
Rayleigh or a Rice distribution of field strength and those for a log-normal 
distribution. This paper presents a semi-rigorous proof that for sufficiently large 
distances and for all values of the medium parameters, subject to their obeying rather 
broad relationships given in the next section, the field has a Rayleigh distribution, 
while at smaller distances and under certain circumstances it can have a Rice dis- 
tribution. These results are in agreement with the conditions set down by de Wolf for 
these distributions, the log-normal distribution occurring at lesser depths. The 
method is related to that used by Mercier (1962) for the problem of scattering by a 
phase thick screen. 

The contribution to the field observed at a given constant z plane after pertur- 
bation by the refractive index fluctuations (‘scattering’) at m previous planes is 
calculated. In this way a perturbation series is derived of which the above quantity is 
the mth term. Between perturbations the wave propagates as though through free 
space. The moments of its field may then be expressed as infinite series, each term 
representing the contribution of one order of scattering and splitting into a sum of 
contributions, each of which may be described by a diagram. The majority of these 
are shown to be negligible in the limit of infinite depth and the ones that survive are 
easily calculated. There is a clear correspondence between the diagrams which 
survive this rejection and those integrals in the paper by Mercier (1962) (around 
equations (15) and (16)) which do not tend to zero for large z.  The probability 
distribution is then calculated from the moments. 

Shishov (1971) has derived expressions for the first and second moments of 
intensity for a wave propagating in such a medium and has shown that in the limit of 
large distance these bear the relationship to one another required by a Rayleigh 
distribution of field strength. We have extended this to show that the relationships 
between all moments of the field, including those which are not intensity moments, are 
consistent with the assumption of a Rayleigh distribution and have consequently 
proved the validity of this assumption. 

2. The physical situation 

We shall consider a plane wave with wavenumber k incident normally on the boun- 
dary z = 0 of a medium-filled half space. For z < 0 the refractive index is n = 1 (free 
space) and, for z > 0, n takes the form 
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Here no is the mean value of n ,  n l  is its standard deviation and n2 is a stochastic 
function of position whose values at different points are assumed to obey a joint- 
norpal probability distribution and a Gaussian autocorrelation function: 

p ( A x ,  A y ,  h z ) = ( n z ( x ,  y ,  z ) n ; ? ( x + A x ,  Y + A Y ,  2 + A z ) )  

= exp[ - ( A x 2  + A y 2  + A z  2 ) / r i ]  

where ro is the scale size of the refractive index fluctuations. This form of autocor- 
relation function is used for mathematical convenience, though there is some evidence 
(e.g. Rumsey 1975, Chytil 1975) that in many applications, particularly in the iono- 
sphere and upper atmosphere, other forms such as the truncated power-law spectrum 
are more realistic. 

In practice we shall have to simplify (2) further by making the commonly used 
assumption that successive layers of the medium scatter independently. This is done 
by replacing (2) by a modified function: 

p'(Ar, A z )  = ro . r r1 /26 (Az )  exp(-Ar2/ri) (3) 

where Ar is the two-dimensional transverse position vector and the constant factor 
r o r 1 / 2  has been chosen so that p and p' have the same integrals over the whole A z  
axis. It is emphasised that p '  is not the true autocorrelation function of n2 ,  which 
should be unity at the origin and should in many practical applications be isotropic. 
However, the effect on the moments of this change is negligible and it does not alter 
the physics of the problem. This approximation is known variously as the delta- 
correlation or Markov approximation and a more detailed justification of its use is 
given, for example, by Barabanenkov er a1 (1971). 

In most applications in astronomy no i= 1 and n 1  << 1. In putting no  = 1 we'are not 
making any real restriction, since its value affects the whole wavefront equally. It is 
also usually true in such applications that the scale size ro is very large in comparison 
with wavelength 2 r / k  of the radiation. A consequence of this is that negligible 
amounts of energy are scattered through angles which are not small in comparison 
with one radian. We shall assume a stronger condition, namely that not only are 
individual angles of scatter small, but that the total angular deviation acquired on 
passage through great depths of medium is also small. Of course, this imposes a 
constraint on the values of z which we can consider: if z is increased indefinitely it 
must ultimately reach a value where the angle of scatter is not small and where some 
of the radiation is scattered backwards. It is here assumed that the medium is 
sufficiently weak for depths to exist which are large enough to allow the subsequent 
approximations to be made but not so large that large angle scattering is important, 
and we also neglect any radiation scattered backwards from extremely remote regions 
beyond the observer. These approximations are valid in many astronomical appli- 
cations. 

The complex exponential notation for the waves is used. Thus the incident wave is 
Einc exp(ikr ) where a time-dependent factor exp(-iot) has been suppressed. Within 
the medium the amplitude and phase of the wave are represented by the modulus and 
argument of a complex number E. 

In order to derive an expression for the general moment 

Ras = (E"E**) 
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of the field at a point in the medium, we must first derive an explicit expression, 
dependent on the particular realisation of the medium, for the field at that point, as a 
sum of components having suffered 0, 1 ,2 .  . . scatters. 

3. Components of the field 

Although the fluctuations in refractive index form a stationary stochastic function of 
position and consequently do not have a proper Fourier transform, we may use the 
techniques employed in generalised harmonic analysis (e.g. Kubo 1966, 9 3, Reif 
1965, 99 15.13, 15.15) to express this function in terms of spatial frequency 
components. This may be done, for example, by truncating the function outside a 
large region and taking the Fourier transform of the truncated function. Although the 
transform itself does not have a limit as the range tends to infinity, the properties we 
require do have well defined limits, so we shall write for arbitrarily large X: 

4 ,.x " X  
1 

A ( p ,  z )  = 7 J J n2(r, z )  exp(-ip . r )  d2r 47r -x  -x 

with 
m 

n2(r ,z)=Ja A ( p , ~ ) e x p ( i ~ . r ) d ~ ~  
-cc -cc 

where -X < x ,  y < X and r is the vector (x ,  y ). In (5) p is a spatial frequency vector in 
the (x ,  y )  plane and A is a complex stochastic quantity having zero mean. 

Consider the field at a depth z due to an incident wave that has been scattered just 
once in a layer of thickness dzl at z l .  Immediately after the layer the field is 

Einc exp(ikz1) exp[ik(l + n1n2) dzl]  

=Einc exp[ik(zl+dzl)]+Einciknln2 dzl exp[ik(zl+dzl)]+O(dz?). (6) 
The first term of (6) is the unscattered field. The component of the field that has been 
scattered once is the second term and may be written 

Einciknl dzl exp[ik(zl +dzl)] J J  A(p ,  z l j  exp(ip . r )  d 2 p  (7) 
where we have used the transform (5) for n2. 

Equation (7) may be considered as an angular spectrum of plane waves originating 
in the plane z = 21. In the small angle approximation this becomes for larger values of z 

Einciknt dzl exp(ikz1) A(p,  zl)exp(ip.  r )  exp[ik(z -zl)(l  -p2/2k2)] d2p  IJ 
= Einciknl dzl exp(ikz) A(p ,  z l )  exp[-ip2(z -z1)/2k] expi(p . r )  d ' p  

(8) 
JI 

which may be interpreted as follows: the factor i is the phase advance of 7r/2 occurring 
immediately on scattering, knl dzl is the strength of scattering within a layer of 
thickness dzl,  exp(ip . r )  is the phase fluctuation imposed by scattering from the spatial 
frequency component p and 
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is the 'distance effect'. In addition to the immediate br phase advance, scattering alters 
the phase of the wave through this last factor which varies smoothly from unity as the 
wave propagates away from the scattering layer. 

We can evaluate (8) at z = z2 and introduce a second scattering layer there of 
thickness dz2. The doubly-scattered component immediately after the layer is: 

Einc(ikni)2 dzl dz:! exp(ikz2) J J A(p1, zl)exp( --&(zZ-zl)p:) 

x exp(ip1 r )  d2p1 1 5  A b ,  22)  exp(ip2 r )  d2p2 

! 

The integrand of (10) looks like an angular component due to scattering from a 
spatial frequency vector pl + p2. It is this frequency which determines the distance 
effect for propagation from z2 to z.  Hence, writing A(pI, zi)=Ai we have: 

Einc(iknl)' dzl dz2 exp(ikz) //[/ A1 exp( -&(z2-z1)p:) 

We can continue to add scatters indefinitely by this process. We shall at present 
require only the value of the field at r = 0 because the medium is statistically stationary. 
Then E(0, 0, z )  includes a component having scattered m times given by 

1 
Ei,,(iknl)" dzl . . . dzm exp(ikz) 1 , . . 1 A1 exp( - - (z2-z1)p:)  2k 
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To complete our expression for the mth scattered component of E(0, 0, z )  we must 
integrate with respect to z l , ,  . . , zm over all values from 0 to 2, subject to their 
remaining in the correct order. Thus 

CO 
2 

2, 2 2  O0 

E,,, = Ei,,(iknl)"' exp(ikz) I, . . I, I-, . . . I-, A t . .  d p m  dzl  d.22.. . dzm. 

(14) 
The total field is the sum of all components: 

m 

E(0, 0 , ~ ) '  C E m ( O , O ,  2) 
m=O 

where Eo represents the unscattered component. 

4. Moments 

We are now in a position to take powers of the field (15) and take averages to form 
moments: 

Rae = (E"E*') 

= C . . C 1 . . . 1 (Em(1) 9 .  E m ( a @ $ t ) .  * . E & ) )  (16) 
m(1) m ( a )  !(I) 1(4) 

where all summations run from zero to infinity. Write N I  = 2?=1 m(i)  and N2 = 
Zip=, l ( j ) .  The quantity inside the angular brackets of (16) is a great multi-dimensional 
integral in which the number of A's is N1 +N2. It is over the product of these A's that 
the assembly average is taken, as it is these that contain all the stochastic nature of the 
fields. 

We come now to the central problem of evaluating this average. The value of 
(A1A2 . , . Ad:+1 . . . A;+J is calculated in appendix 1. It is shown there that : (i) this 
average is zero if p + q  is odd; (ii) it splits into a sum of product of pairs of the form 
(AiAr) or (ATAT) or (AiAT) if p + q  is even; and (iii) the values of these three 
autocorrelation functions are 

(17) 
1 3 -1/2 2 1 2 2  
TOT 6 (pi * p l ) G ( Z j  - z / )  exp( - apj ro),  

the plus sign being taken in the first two cases and the minus sign in the third. In deriving 
(17) we have used the delta-correlation approximation (3). 

The two delta functions in (17) tell us that for two scatters to be correlated they must 
occur at the same depth and from spatial frequency vectors that are equal and 
antiparallel for (AA!) and (AFA:), and are equal and parallel for (AiA$). 

Thus NI + N2 must be even, say Nl + N2 = 2N. N is the order of the term. 

5. The diagram technique 

It is convenient at this stage to introduce a technique for describing the various terms of 
(16) by means of diagrams. Each term is represented by a set of diagrams containing 
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a + /3 horizontal lines, each of which represents one of the fields E,(i) or ET6). A scatter 
occurring in one of the fields is denoted by a dot on the corresponding line, in a position 
along the line given roughly by the value of z at which the scatter occurs. Since only 
correlated pairs of scatters have any significance, we may join such pairs by lines, 
vertical if the dots are on different horizontal lines or hooked if they are on the same 
line, to show the correlations. The order of these lines from the left represents the order 
of occurrence of the scatter pairs. Figure 1 represents three of the contributions to 
(E2E2E2E1ETETEt) in which the fields are labelled from top to bottom. 

Figure 1. Three contributions to the term ( E 2 € 2 € 2 E 1 E ~ E ~ E ~ ) .  

Each pair of scatters is of one of three types: 
(i) it may involve one starred and one unstarred field; 
(ii) it may involve either two starred or two unstarred fields; or 

(iii) it may involve only one field. 
Each diagram represents: ( a )  a 2N-fold integral over the zi; and (6) a 4N-fold 

integral over the pi. N of the integrals ( a )  and 2 N  of the integrals (6)may be performed 
immediately on account of the delta functions. We can label the scatter pairs by the 
order of the depths at which they occur and then integrate over these depths keeping 
them in order as in (14). 

The problem of 'double scatters', that is, scatter pairs of type (iii) above, is dealt with 
in appendix 2. It is shown there that their presence affects the contribution made by a 
diagram to the moment by an overall factor dependent only on the medium parameters, 
the depth z and the order of the moment, and hence outside the integrals. The effect of 
all possible configurations of double scatters in otherwise identical diagrams is included 
simply by multiplying the contribution of the basic diagram (without any double 
scatters) by 

(18) 
exp[-sk 1 2 2  n l r o r 1 ' 2 ( a  +p)z ]  =exp[-i(cu +p)1] 

where 

I = k2n:ror1'*z 

Now we need only consider diagrams containing scatter pairs of types (i) and (ii). 

6. Evaluating the diagrammatic contributions and selecting the dominant ones 

The integrand of (16) has become the exponential of a quadratic form in the vectors pi: 

exp(-n/i,ipj. pr)=exp(-pj*)w,ipI") - k j y ) ~ ~ ~ ~ ! y ) )  (19) 
where pi = (I?), p y ) )  and the summation convention has been used. The jth diagonal 
element of the symmetric N x N matrix M is of the form 

2-2, 1 2  
M~~ = bri + ia,---' 2k = aro(l  + 2iajjlyi) (20) 
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where 

yj = (2 - z j y z  

5 = z/kr t  

and aii is some integer dependent on the particular diagram in question. The first term 
of (20) arises from the Gaussian factor in (17) and the second from the relevant distance 
effect factor (9). The integer aii lies between -2 and +2, and we shall later examine the 
conditions under which it is zero, these being the only properties we require. 

The reason for the changes of variable (21) and (22) is that the yj  all lie within the 
range ( 0 , l )  and so do not get large with z ,  and that z/krz is the natural way of scaling z ,  
being its value in units of the Fresnel length. 

The ( j ,  I) and (I, j )  off-diagonal elements of M with j < 1 are of the form 

(23) M ,  - M  -1 2 
I~ - l j  - 4r0 x 2iqrly1 

and the remarks concerning cyii apply also to ail. 
The remaining pi integrals may now be evaluated in the usual way, by transforming 

the above quadratic form into a system of coordinates in which M is diagonal. The 
integrals over the components P I X )  and p y )  of the vectors p i  produce identical factors 
and the result of the integrations is 

7rN/det(M). (24) 
The contribution made by any diagram to the moment RnP is of the form (using (14), 

(161, (18) and (24)) 

E,P,,E~~(iknl)”(-iknl)” exp[ik(a -P)z] exp[ -+(a + P ) I ]  
1 

x 
0 J1 YN J 1  Y N - 1  . . . Jy, dY1‘&M;dym. (25) 

As an example of how this works in practice, consider the diagram in figure 2. After 
the p’s and z’s in each scatter pair have been equated by integration of the delta 
functions, the exponent of the integral corresponding to this diagram is 

1 
--[(zs-z3)P:+ (2 -Zs)(P3 +Ps)’ from 1st line 

+ (z6-zZh: + (2 -z6)(c(2 + p6)’ from 2nd line 

+ (z4-zi)p? + (2 - Z q ) b i  + p4)’ from 3rd line 

+ (26 - z ~ ) ( - p z ) ~  + (z - ~ 6 ) ( - p 2  - p6)’ from 5th line 

- (z-Zs)P:  from 6th line 

- (z4-zi)P; + (2 - z4 )b  1 + p4) ’  from 7th line 

- (2 - z3)P:l from 8th line 

- i d ( p ;  + P: + pt + ~f + p + CL:) from correlations as in (17) 

2k 

(26) 

(27) 

= &%-2i5[2p3 * pSY.5 2pzY2 + (2p: + 4442 p6)y6] 
2 2 2 2 2 2  

- p  1 - P 2 - @ 3 - p 4 - p S - p 6 ] -  
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Figure 2. A sixth-order contribution to the moment 

The matrix M is given by: 

M = ari(l+ 2ilM') 

where I is the sixth order unit matrix and M' is 

0 0  0 0 0  0 .  

' 0 0  0 0 0  0 
0 2y2 0 0 0 2y6 
0 0 o o y ,  0 

0 0 y 5 0 0  0 
10 2Y6 0 0 0 2Y6 I 

In general (28) will hold with M' given by 

11 IIYI 
M ! .  = a.. 

MI, = M;j = ajlyi (1 >A. 
Now any non-zero ail is enough to alter the value of the determinant M from the value 
of 

(31) 
which it would take if all the ail were zero. For example, if a,i were non-zero, det(M) 
would contain a term 

while if q ( j  < I) were non-zero, det(M) would contain a term 

For large l the new term will dominate the term (31) and the contribution (25) will be 
O(l- ' )  in comparison with contributions for which all the ail = 0. Thus we may neglect 
all diagrams that give rise to non-zero M' provided we prove that for any N there exists 
at least one diagram having zero M'. Such a diagram will be called a dominant diagram. 

We must now look back to expressions (13) and (17) to see which kinds of diagrams 
are dominant. It is clear that if any pair of scatters is of type (ii) each of the two scatters 
in the pair will contribute an equal factor 

to the integrand and the corresponding matrix will have aij = *2. The determinant will 
thus not be ( f r i ) N  and the diagram non-dominant. A necessary condition for a diagram 
to be dominant is thus that all its scatter pairs be of type (i). In diagrammatic terms, all 
vertical lines must link a starred to an unstarred field. 
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Further, if any field undergoes two scatters, each of which is correlated with one in 
different fields as in figure 3, then that field will introduce into the integrand a factor 

Figure 3. A possible feature of a non-dominant diagram. 

and since pi .  pi dependence can only arise from a field involved in both the jth and lth 
scatter pairs, of which there is only the one, aj i=*l .  The diagram is thus non- 
dominant. If, however, the jth and Ith scatter pairs involve the same two fields, one 
starred and one unstarred, each field introduces a factor in pi. pr. These two factors will 
be complex conjugates of one another and their exponents will cancel. Thus ail = 0. 

A second necessary condition for a diagram to be dominant is thus that each field 
may be involved in correlated scatter pairs with only one other field, though there may 
be any number of pairs of scatters linking them. In diagrammatic terms, each horizontal 
line of a diagram must be linked by vertical lines to only one other line which must be of 
opposite type (starred or unstarred) to itself. It may be so linked by an arbitrary number 
of links. 

These two conditions are together sufficient to ensure that a diagram is dominant. 
That this is so may be seen by arguments along the same lines as those for their 
necessity; if each field has a twin of the opposite sort, which undergoes scatters from the 
same spatial frequency components at the same depths, then the two fields will 
introduce equal and opposite phases to the integrand through the distance effect factors 
(9). The matrix will thus be simply aril  and the diagram dominant. 

In the example, in figure 2, the first and fourth scatter pairs, linking the third and 
seventh fields, could be part of a dominant diagram since the third field is unstarred and 
the seventh starred, and each is linked only to the other. This shows in the matrix M’ 
((29)) as zeros filling the first and fourth rows and columns. The second and sixth 
scatters violate the first criterion for dominance, and the third and fifth violate the 
second. These violations appear in (29) as non-zero elements in the second, third, fifth 
and sixth rows and columns. A diagram is dominant only if all its scatters obey the 
criteria and hence M’ is zero. Examples of dominant and non-dominant diagrams are 
shown in figures 4(a) and 4(b) respectively. 

( b )  

Flgue 4. ( a )  Some dominant diagrams: ( b )  non-dominant diagrams. 
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Clearly for any N such a diagram exists provided a and p are both non-zero. We 
shall consider the problem of (E")  later. 

The above conditions rule out the majority of possible diagrams of any order N, and 
the proportion excluded increases with N. It may be asked at this point whether the 
larger number of non-dominant diagrams may not outweigh their smallness so that their 
resultant contribution is comparable to, or greater than that of the dominant diagrams. 
This question is discussed briefly in appendix 3. 

7. Evaluation of the contribution from dominant diagrams 

The fact that in a dominant diagram different pairs of fields are not linked means that 
the contribution from such diagrams factorises into expressions characteristic of first or 
second moment diagrams. This is shown schematically in figure 5 ,  and is of crucial 
importance because, when we sum over diagrams, we will obtain a sum of products of 
first and second moments similar to the right-hand side of equation (A.2) in appendix 1, 
suggesting a Gaussian distribution of the field. 

:mi=-lq- X r r X  

Figure 5. A schematic demonstration of the factorisation of a dominant diagram. 

Ascribe a label (a, b )  to a diagram if the ath and bth field lines are linked by one or 
more scatters. In general a diagram will possess several such labels; the diagram in 
figure 5 for example has labels (1,5), (2 ,7)  and (3,6). Now if we sum over all diagrams 
having a given set of j labels and no others 0's min(a, p)) we obtain: 
( (E  e-V2)(~ e-//2)*)i(~o e-'/2)"-j(~g e-1/2)P-i 

(36) = (p~*)  - (E&;) e-')j, (Eo)a-j(Eg )P-j e-4(a+P-2i)l 

The second moments here are ( (E -Eo e-'l2)(E -Eo e-'l2)*) rather than (El?*) because 
in our definition of the label (a, b) we have excluded the case where the ath and 6th 
fields have no scatters. In this case both ath and bth fields enter the 'pool' of unscattered 
fields and the diagram has j - 1 labels. Now we know that: 

The first two of these follow immediately from (14) and the third is a statement of the 
law of conservation of energy. As a demonstration of the use of the diagrammatic 
technique, the third result may alternatively be derived by summing the second moment 
diagrams shown in figure 6. The mth order component is easily shown to be 

l ~ ~ ~ ~ l ~  exp(-l)l"/m ! (38) 
and this is summed over m to give the desired result. 
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Figure 6. The contributions to the moment @E*). 

Insertion of (37) in (36) gives 

E~cE~![l-exp(-l)]’ exp[ -$(a + p  -2j)ll exp[i(a -p)kz]. (39) 

This result must be multiplied by the number of ways of choosingj pairs of fields, one of 
each pair being taken without replacement from a set of a fields and the other from an 
independent set of p fields. To get a complete answer for the moment RQB this result is 
then summed over all possible j ’ s :  

1 is proportional to z and so, in the limit of large z, we need only consider terms for 
which a + p  -2 j  is zero. Since j is less than or equal to the smaller of a and p, this 
condition will never be met unless a = p. Hence 

RaB = a!IEinclzQ6QB. (41) 

This is our final answer for the moment RaB in the limit of infinite depth within the 
medium, provided (Y and p are both non-zero. If both are zero the moment is trivially 
unity and (41) still holds. If one is zero then there can be no dominant diagrams. Every 
diagonal element of each matrix M’ is non-zero and so for large C the contribution looks 
like ( - N .  We can neglect every contribution in comparison with the zero order one, 
which itself decays as exp(-&I). Thus (41) still applies and is good for all cases. 

8. The probability distribution 

Since knowledge of all the moments of a statistieal quantity is equivalent to knowledge 
of its probability distribution, we may construct the two-dimensional distribution 
P(ER, EI)  from the moments (41). Here ER and EI are the components of E in the 
Argand diagram. 

The characteristic function is 

(EkE*’-k) is zero unless k = j - k, which can only be satisfied for even j .  Reversing the 
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order of summations and putting j = 2k gives: 

(43) 
1 

= (-tIU121Einc12)kG= exp(-aIU121Einc12). 

P(ER, E I )  is now obtained by reversing the Fourier transform (42): 

m 

k =O 

Hence the two components of E in the Argand diagram obey a two-dimensional 
uncorrelated Gaussian probability distribution, each component having zero mean and 
variance equal to half the square of the incident amplitude. 

9. The Rice distribution 

In deriving the probability distribution (44) we assumed that I =  z / k r i  was large 
compared with unity in order to reach expression (36). We later assumed that I was 
large compared with unity after equation (40). Both these parameters are scaled 
versions of z and for a given medium both conditions are satisfied in the limit z + 00 

subject to the considerations of 0 2. If z is large but finite, it is possible that one or other 
will not be satisfied. 

We can make no progress at all without assuming that f is large: the elimination of 
the large part of the diagrams is the central feature of our method. On the other hand, it 
is not necessary to assume that 1 is large in order to get some answers. In this case (40) 
becomes 

min(a,p) 

j = O  
RPP = ELE:! exp[i(a -P)kz] exp[ -;(a! +p)1] 1 pCiPCij![exp(l)- 11’ (45) 

which is expressible either in confluent hypergeometric functions or in Laguerre 
polynomals: 

a! 
RU@ = EL?3?,! exp[i(a - P)kz] exp[ -$(CY + B)I]- 

(ff - -PI !  

In (46) and (47) we have taken P S a without loss of generality. 
These moments may be shown to be those of a complex quantity whose two 

components obey identical, independent Gaussian probability distributions about 
non-zero means. 

In our case 

(E) = Einc exp(ikz) exp( - $I) (48) 
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and the common variance of the two Gaussian distributions is 

U2 =$Einc12[1 -exp(-~)~ .  (49) 

In this case the magnitude [El of the field has the distribution discussed by Rice (1944, 
1945, P 3.10): 

P ( E )  = 7 E exp( - E 2  +E",.( 7) 
U 2U2 

(46) reduces to the expression derived by Rice for 

(50) 

the moments of (50) if we put cy = p. 

10. Depths at which these arguments become valid 

The previous discussion suggests that the field will have a Rayleigh distribution if ( and I 
are both large in comparison with unity, and a Rice distribution if 4' but not 1 is large. 
This is an oversimplification, however. For large 1 the considerations of appendix 3 
must be taken into account and complicate the situation. All that can be seen from 
these arguments is that condition for Rayleigh distribution will involve the relationship 
between I and 5, not just their individual values. 

Arguments from ray theory (Hannay, private comunication) suggest that the 
conditions for the Rayleigh distribution are that 1 >> 1 and 3 >> G-'I3 where 

G = k 3 r & W 2  = i/5. (51) 

The ray arguments also suggest a connection between this distance and the position of 
the peak in the curve of second intensity moment against depth. This agrees with other 
arguments (Shishov 1971) implying that such a peak occurs at a value of 5 proportional 
to G-If3.  

For situations in which I is not large, where we expect a Rice distribution, this 
complication does not arise. As shown in appendix 3, I is a measure of the mean 
number of scatters and for 1 - 1 we need only consider a small number of them. Thus 
the number of diagrams is small and there is no question of large numbers outweighing 
small contributions. In this case the condition 5 >> 1 seems sufficient to ensure a Rice 
distribution of field strength. 

11. The general field moment at several points 

The probability distribution (44) contains all the information which we may require 
about the value of the field at one point. In order to have equally general information 
about the values of fields at different points, such as correlation functions and so on it is 
necessary to know the joint probability distribution of the fields at an arbitrary number 
of points. We will continue to consider only a single frequency characterised by the 
wavenumber k. 

The most general moment of E(x, y, z )  at m different points is of the form 

(E "l(r1 )E (r 1 )E "2 ( r2)E*'2(r2). . . Enm(rm)E*Pm(rm)). (52)  

This may be expanded in diagrams having Zj ni +ZIP/ horizontal lines divided into 2 m  
groups as in figure 7. The contribution of each diagram is calculated in the normal way. 
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Figure 7. The basic structure of the diagrams contributing to the moment. 

(E”’( r1)E*”( rl)Ev( r*)E*-( rz) . . . E*’“‘ (r,,, )). 

In fact, the integrand arising from each diagram is simply its value for rl = r2 = . . . = 
r,,, = 0 multiplied by a factor 

exP( ic ( * P  .I). (53) 

Here the summation is taken over all scatters, p is the spatial frequency vector from 
which the scatter occurs and r is the point at which the relevant field is measured in the 
observer’s plane. The plus or minus sign is taken depending on whether or not the field 
is starred in (52). (53) arises from factors such as the last factor of (11). 

The contribution to (53) from double scatters is zero since both scatters are 
associated with the same r and opposite p’s. After dealing with these, each p is 
associated with two fields. If a scatter pair is of type (i), the p’s associated with each 
scatter will be parallel, but will have opposite signs in (53), while in the case of a scatter 
pair of type (ii) the p’s will be antiparallel and have the same sign in (53). In either case 
the contribution to the sum will be p . Ar where Ar  is the difference in position between 
the points of measurements. Ar is defined only up to a change of sign but.this will not 
matter since the answer involves only its square. (53) becomes: 

exp( i 1 p . Ar) 

where the summation is taken over all scatter pairs. The integrand is 

(54) 

from (19) and (54). The exponent now contains terms linear in pi as well as quadratic 
terms. The integrals with respect to pi can be performed by diagonalising M as before 
and then completing the square in p y )  and pIy). It may be shown that the result is 

L, 

7T“ 

det(M) 
exp( --&: Ar! . Arm). 

It is plausible that each element of M-’ should tend to a finite limit as z tends to 
infinity. That this is so is proved in appendix 4. Hence the exponential in (56)  becomes 
independent of z as z gets large, a diagram has the same order in powers of z as its 
single-point counterpart and the same two conditions are required in order that it will 
be dominant. If these are satisfied, M = (ri/4)l, M-’ = (4/ri)l and (56) becomes 

the summation being once more over all pairs of scatters. 
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Define labels (a, b)  as before. Sum over all diagrams having a given set of labels. 
Then every pair of fields contributes a factor 

m 

[Eincl’ 1 exp(-l)l“ exp(-nAr’/r;)/n! 
n = l  

where n is the number of links. This is 

IEi,,J2[(exp{-l[l - exp(-Ar’/r;)]} - exp(-l)]. (59)  

This tends to zero as 1 tends to infinity unless A r  = 0 in which case it is IEinclZ. Thus, any 
set of labels gives zero contribution in the limit z + 00 unless all pairings are between 
fields measured at the same point. The moment (52) thus splits into a product 

(E”’E*P’)(E”2E*P2) , . . (EnmE*Pm). (60) 

Since this true for all ni and pl, the joint 2m-dimensional probability distribution of the 
values of the field at m points factorises into m identical two-dimensional single-point 
distributions which are Gaussian distributions (44). The result tells us that if we go 
sufficiently far into the medium, the correlation length of the field tends to zero and the 
values of the field at two points, however close, are independent. This is true in the 
limit of extreme paraxiality, when the wavelength is vanishingly small in comparison 
with the transverse scale size ro of the irregularities. For finite wavelengths it may be 
shown by simple arguments based on the wave equation that coherence over a scale of 
order of one wavelength will be present at any depth. However, if our small angle 
scattering approximation is to be valid, this will be very short in comparison with all 
other transverse length scales in the problem. 

12. Conclusions 

For given medium parameters the probability distribution of the field tends to a 
two-dimensional circularly-symmetrical Gaussian distribution in the Argand plane 
centred on the origin, as the observer depth tends to infinity. The variance of the field 
strength is equal to the square of the incident amplitude. The fields at different points 
are completely uncorrelated. This is a reasonable approximation provided 

If we fix the value of 1 3  k2n:ro7r1’2 - 1 and consider the limit as t -* 00 subject to this 
constraint we obtain a two-dimensional circularly-symmetrical Gaussian distribution 
about a mean 

~i~~ exp(ikz) exp(-41) (62) 

[1 -exp(-~)]IEincI’. (63) 

with a variance 

This leads to a Rice distribution of field strength and is a reasonable approximation 
provided 

f>>l  or z >>kr;. (64) 
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Appendix 1. The values of the moments of A 

Equation ( 5 )  expresses the spectrum A in terms of the spatial variations in refractive 
index. The moment (A1 . . . Ad:+l . . . A:+q) may be written 

J . ., .I (n2(rlr 21). . . nz(rPcq, zp+q))  exp[-i(rl pl 
(4 tr2 )p+q  

2 + r2. p 2  + . . . + r, . p, - rPcl . p,+l - . . . - rp+q. pPcq)]d2rl . . . d r,,, 
(A.1) 

Since the values of 122 at different points have a joint-normal distribution, the average 
over p + q values of A is zero if p + q is odd, and splits into the sum of all possible 
factorisations into pairs, each pair being averaged independently if p + q is even. For 
example, if P, Q, R and S are four random variables having a joint-normal distribution 
about zero means, then 

(PQRS) = (PQ)(RS)+(PR)(QSJ+(PS)(QR). (A.2) 
Using this result we may split expression (A.l) into a sum of integrals in which the A’s 
are paired. These integrals factorise into integrals of the form 

and three other integrals of similar form representing (AA?),  (ATAI) and (ATA?). 

shown (e.g. Reif 1965) that as X + CO (A.3) has a limit. This is 

-1 . . .I- p(Ar,Az)exp{-i[R.(pj+p~)+~Ar.(pj-p~)]}d2R d2Ar 

where 

The ranges of integration for each component of rj and rl are (-X, X). It can be 

1 “  m 

(477 --m m 
(A.4) 

R = i(ri + ri), Ar = rj - rl and Az = z j  - zi. 64.5) 

( A ~ I )  = ar&-1’2S2(pj +p1)8(z,  - 2 1 )  exp( -ipfrE) 

s2(u)  = s(u,)s(u,)  for U = (ax, a,).  (A.7) 

(APT) = (ATAJ = tr&r-1’2S2(pj -p i )S (z j  - 2 1 )  exp(-zpiro). 1 2 2  

Insertion of p from (3) gives 

(A.6) 
where 

Since (A.6) is real it is also the value of (ATAT). (AjAT) and (ATAl) may be calculated 
by a similar method and are found to be 

(AA) 
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Appendix 2. The effect of double scatters 

Consider a contribution to the diagrammatic expansion of a moment, composed solely 
of scatter pairs of types (i) and (ii), that is, having no double scatters. Introduce a double 
scatter into one field at some position between existing scatters of that field at za and Zb 

as in figure 8. After the scatter at zo the field under consideration has a wavefront with 
spatial frequency 

cC=ccLi (A.9) 

where the summation is taken over all previous scatters of that field. In the absence of 
the double scatter a factor 

would come into the integral and the field just before z b  would still have spatial 
frequency p. 

Figure 8. A double scatter inserted into a general position in a diagram. 

When the double scatter is introduced we get instead of (A.lO) a factor 

(iknl)2 exp --(z’-za)p2)A(pf, z’)exp( - z ( z “ - z ‘ ) ( p  i +p‘,’) ( ( , k  

X A(p”, z”)  exp( -i(i!b - z”) (p  + p’  + p”)’)) dz’ dz“ d2p’ d2p” 
2k 

(A. l l )  

and the field immediately before Zb has spatial frequency p + p ‘ + p “ .  When we 
perform the assembly average (A. 11) becomes: 

$(iknl)2r~.rr-”2S2(p’+p”)S(z’-z”)  exp(-$pT2ri) exp --(Zb - za)p  ’> ( i k  

1 
x exp ( -@”- z ’ ) (pt2  + 2p . p ’)+ (zb - z’ ! ) (p l2 + ptr2 + 2p . p r  

+ 2p.  p”+2p ’ .  p”) ] )  dz’ dz‘’ d2p’ d2p”. (A.12) 

This is to be integrated over z‘ from za to z” ,  over z” from za to zb, and over the whole of 
the p’ ,  p” planes. The result is 

(A.13) ( i k  

The spatial frequency of the wave at zb is p since p‘ = -p”. Thus the only effect of the 

-5k 1 2 2  nlro7T’/2(zb-Za)eXp --(zb-Z.)p2). 
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double scatter is a factor 
-3k 1 2 2  n1rOT1”(zb -za). (A.14) 

This is now summed over all possible intervals (za, 26) in which the scatters may occur 
giving a factor 

(A.15) 

If we insert a second double scatter into the same field we multiply by this factor again, 
then divide by two to avoid double counting, Insertion of n double scatters is 
accomplished by multiplying by ( - $ l ) “ / n  ! and when we sum over all possible numbers 
of double scatters (within the one field) the answer is a factor 

exp( - $1) (A.16) 

which multiplies the contribution of the diagram in the absence of any double scatters. 
Finally we allow the double scatters to occur in any field. The basic contribution is 

now multiplied by a factor (A.16) for each of the fields involved, leading to a factor 

(A.17) 

-=jk 1 2 2  nlr0r1’2Z 3 -1 
2 1. 

exp[ - ;(a + p 111. 

This factor accounts for the exponential decay of the mean field. 

Appendix 3. An answer to a possible objection 

Consider the contributions to a moment R,, at a depth z .  There will be a number Ne,  
such that diagrams whose orders are near to Ne, will represent the most important 
contributions to the moment, and Ne, increases with z.  In fact, the number of scatters 
suffered by the field in traversing a slab of medium of thickness z obeys a Poisson 
distribution with a mean proportional to z (that is, scattering is a Poissonprocess). Thus 
Ne, is proportional to z,  say 

Ne,  = A Z .  (A. 18) 

Since the number of possible diagrams of order Ne, is 

[(a +PXa + P  - 1) /2INeff  (A.19) 

and increases rapidly with Nee and since the number of non-dominant contributions 
increases much faster than the number of dominant contributions, it may be asked 
whether, as z tends to infinity, the greater number of non-dominant diagrams may not 
outweigh their smaller effect. Since the dominant diagrams need only be one order of z 
greater this seems possible. 

The author knows of no rigorous proof that it is not so but puts forward the following 
as a plausibility argument. 

It is true that some non-dominant diagrams will be only one or two orders of z below 
the dominant diagrams of equal N, but there are relatively few of these, of order of, or 
less than, the number of dominant diagrams. As N increases the large majority of new 
diagrams created will be extremely complicated with many interlinkings. The matrices 
will have a large number of non-zero elements and their determinants will be 
completely or very nearly ‘saturated’, that is, will have terms in or near z”. The 
associated diagrams will thus be of order z-” compared with corresponding dominant 
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diagrams, and their joint contribution will be of order 

(A.20) 

since there are about [(a +@)(a + P  - 1)/2IN of them. This tends to zero as N tends to 
infinity provided z is sufficiently large. 

Appendix 4. The limit of M-' as z tends to infinity 

M may be written ((28)) 

M = ar;(l+ 2i5M') (A.21) 

in which the matrix M' is not dependent on z. Let K be the matrix whose columns are the 
eigenvectors of M' so that K-'M'K is a diagonal matrix A where 

Ajl = 6jiAj. 

Then 

K-'MK = ari ( l+  2i[K-'M'K) = $r i ( l+  2i5A). (A.22) 

This matrix is diagonal and is inverted by simply inverting each diagonal element: 

Hence 

(A.23) 

(A.24) 

Since the matrices K and A are independent of z, each element of M-' is a sum of 
constant terms or terms in 5-l. Hence as 5 tends to  infinity they tend to finite limits. 
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